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Abstract A knowledge of the distances regularly travelled
by foraging bees is essential to understanding the movement
of pollen across landscapes, and has implications for the
conservation of both pollinators and plants. Unfortunately,
the movements of bees are difficult to measure directly at
ecologically relevant scales. A common strategy for quan-
tifying the foraging ranges of social bees is to sample the
genotypes of foragers across a landscape. Individual for-
agers can be assigned to colonies with polymorphic genetic
markers, and the dispersion of siblings in space can be used
to make inference about colony locations and foraging move-
ments. Several previous studies have sampled sibling geno-
types at discrete locations (for example, at regular points
along a transect), rather than in continuous space. Restrict-
ing the collection of bees to discrete locations presents a
number of considerations for sampling design and data anal-
ysis. In this paper, we develop a spatially-explicit, model-
based framework for the simulation and estimation of for-
aging ranges. Using these tools, we simulated experiments
to characterise the efficacy of different sampling strategies,
and provide an example with actual data that demonstrates
the advantages of our method over an approach based on
regression.
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1 Introduction

Social bees are among the most iconic groups of study in
the field of foraging biology. Like other bees, they require
pollen and nectar resources to feed themselves and produce
reproductive offspring. However, unlike solitary species, so-
cial bees forage collectively and are believed to have much
higher individual foraging demands due to the high and pro-
longed demands of brood care (Heinrich 2004). This high
level of foraging activity is one potential reason why so-
cial bees, such as honey bees, bumble bees, and stingless
bees, are managed alongside crops within many agricultural
systems, and are also often highly effective crop pollinators
(Bohart 1972). While landscape-level foraging is important
for both natural and agricultural systems, past work on so-
cial bee foraging has largely focused on small spatial scales
(Osborne et al 1999) and little is known about the drivers of
foraging across landscape scales.

The spatial scale at which colonies forage – the area
within which foragers travel to find food, and disperse pollen
among plants – is intimately related to the survival and growth
of individual colonies (Williams et al 2012; Osborne et al
2008) and the plants they pollinate (Bond 1994). The spatial
frequency distribution of foragers from a given colony (for-
aging kernels) is key to predicting the movement of pollen
between individual plants and the spatial distribution of flo-
ral resources required by bee populations (Goulson et al
2010; Lonsdorf et al 2009). However, the foraging distances
of small insects such as bees are extremely difficult to mea-
sure directly. Past studies examining foraging ability have
largely used feeder or colony member displacement experi-
ments to determine maximum foraging distances (reviewed
in Greenleaf et al 2007); while these studies allow for species-
comparisons in feeder/displacement response, they do not
measure foraging in response to the distribution of floral re-
sources. More recent methods use radio or radar tracking
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(Osborne et al 1999; Lihoreau et al 2012), and these pro-
vide much more detailed information about finer scale for-
aging movements, response to local resources, and changes
in foraging movements across a foraging bout. However,
these studies are often costly and labour intensive, and do
not scale to populations and landscapes. Technologies which
can measure movements across a wide radius (such as har-
monic radar) are often only suitable for open, unobstructed
habitats and require colonies to be either located (a non-
trivial task) or to be reared and placed at selected locations,
limiting use for wild colonies.

For social bees, genetic tools provide a cost-effective
means to estimate foraging range in wild populations, with-
out prior identification of the colony locations (Darvill et al
2004). The essential idea is that sibling foragers can be as-
sociated with the same colony using polymorphic genetic
markers, and the dispersion of siblings in space carries infor-
mation about both foraging distance and the colony location.
Since Chapman et al (2003) and Darvill et al (2004) first pro-
posed using the spatially-referenced genotypes of foraging
bumble bee siblings to make inferences about foraging pat-
terns, many studies have employed this technique to address
questions about the spatial ecology of bumble bees. Initial
efforts used sibling-genotype derived distances to compare
the foraging ranges of different bumble bee species (Knight
et al 2005), whereas more recent applications have examined
how foraging range is influenced by the floral community
(Jha and Kremen 2013), land use (Dreier et al 2014), and
plant phenology (Jha and Pope, in review). Foraging sib-
lings that are captured in continuous space bring the most
information about colony locations. However, sampling in
continuous space involves humans searching for bees across
the entire foraging kernel (often multiple km) with insect
nets, and so requires a considerable effort to cover moder-
ate spatial and temporal scales. A less laborious alternative
is to catch bees and sample their DNA at discrete locations
(see for example Darvill et al 2004; Jha and Kremen 2013).
Discrete sampling can be performed in a systematic way
across large spatial areas, either by active trapping (with in-
sect nets), or with passive trapping (such as with blue vane
traps). Passive traps can be left for several days, providing
genetic material with relatively little monetary and logistic
cost, although all passive traps which provide genetic mate-
rial from bees are lethal. However, the accuracy and efficacy
of these schemes has not been examined critically, and often
the methods used to analyse these data falsely assume that
data was collected in continuous space (Darvill et al 2004;
Knight et al 2005; Jha and Kremen 2013).

The literature on trapping methodology for the estima-
tion of population densities and space use is vast and encom-
passes both design (e.g. Foster and Harmsen 2012; Sun et al
2014; Royle et al 2013b) and analysis (e.g. Worton 1987;
Efford 2004; Royle et al 2013a). In our opinion, this ap-

plied literature provides valuable insights into methodolog-
ical approaches for inferring foraging movements from sib-
ling genotypes. There are three main facets to trapping so-
cial bees that deserve close consideration, given their rele-
vance to predicting nesting and foraging dynamics. First, the
spatial distribution of forage and colony densities can range
from clumped to homogeneous and should be considered
in any generative model that aims to describe nesting and
foraging behaviour. Specifically, we posit that relative visi-
tation rate to a spatial location must consider forage quality,
as this affects bee patch visitation (Robertson et al 1999).
Past studies on social bee colonies have shown that foraging
kernels are not always symmetric (e.g. Visscher and See-
ley 1982), and thus models should not automatically assume
symmetry. Instead, we expect that when averaged over in-
dividuals, foraging patterns will reflect the distribution of
forage in the landscape, relative to the colony location. The
traps may non-randomly vary in attractiveness, as a function
of the forage quality near the traps; and unobserved (but at-
tractive) areas of the landscape may ‘compete’ with traps for
bees.

Second, average foraging distance can be estimated at
different levels of organisation, and it is important to distin-
guish among them. For example, past studies have estimated
the foraging distance of individuals (Zurbuchen et al 2010);
the average foraging distance of colonies (Jha and Kremen
2013); and the average foraging distance across landscapes
and species (Knight et al 2005). The estimation of individ-
ual foraging distances can be rephrased as the estimation of
colony locations, and is a necessary step in estimating the
average foraging range at higher levels of organisation. In
the past, the colony location has typically been estimated
by the centroid of forager locations (Knight et al 2005; Jha
and Kremen 2013). When bees are sampled at discrete lo-
cations, the centroid will clearly be a function of the dis-
tance between traps and the trapping arrangement, and so
is a biased estimate of the colony location. Whether or not
bees are captured in discrete or continuous space, the real-
ity is that the locations of colonies are unknown but can be
estimated along with the foraging kernel. To accommodate
these considerations, we advocate a model-based approach
which explicitly incorporates the method of data collection
and the spatial locations of collections.

Third, estimates of foraging will depend on the spatial
distribution of traps (Sun et al 2014), and the design of the
trapping scheme should be carefully considered with refer-
ence to the size of the landscape and the question under in-
vestigation. For example, if the question revolves around the
relative differences in average foraging range across land-
scapes, biased but consistent estimates may accurately an-
swer the question. Studies which have used discrete trapping
to sample bee genotypes have typically done so by collect-
ing along a transect (Darvill et al 2004; Knight et al 2005;
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Goulson et al 2010; Jha and Kremen 2013). Traps arranged
in grids are commonly used when estimating movement and
density of mammals (but see Parmenter et al 2003; Pear-
son and Ruggiero 2003). A compromise between a single
transect and a grid is two perpendicular transects (a ‘cross’),
and another option is to place traps at random throughout
the landscape. In general, the efficacy of a trapping scheme
depends upon the extent and density of the grid, in rela-
tion to the spatial scale at which animals are moving (Sun
et al 2014) and the overlap between the animals’ range and
the traps (Bondrup-Nielsen 1983). By trap density, we mean
the number of traps within a fixed area and given trap ar-
rangement, such that increasing the density will decrease the
space between traps.

In this paper, we provide four main contributions: (1.)
A simple simulation scheme that generates foraging kernels
for various colonies, and incorporates the spatial location
of the colony and the spatial arrangement of forage. From
these foraging kernels, simulation of samples within a trap-
ping array follows easily. (2.) A Poisson-process based ap-
proach to estimating foraging range from trapping data, that
integrates over uncertainty in colony location and incorpo-
rates differential attractiveness of traps. (3.) A set of sim-
ulated experiments to assess the efficacy of different trap-
ping schemes for estimating average foraging range at vary-
ing levels of sampling effort and organisation (i.e. colony,
landscape). (4.) A comparison of our model to a previously
used regression method, when applied to a dataset of bum-
ble bee collections across a heterogeneous floral landscape.
Our results illustrate how a combination of the genetic iden-
tification of sibships and passive trapping can be adapted to
specific goals, such as identifying colony locations, or test-
ing hypotheses about differences in foraging distance across
landscapes.

2 Methods and models

2.1 Simulation of data

To make simulation more tractable, we discretise continu-
ous space into a raster by dividing the landscape into a grid
of equal sized cells: let J be the set of all cells. Assume
that some number of colonies nest in the landscape: let C be
the set of all colonies. Let η( j) be the rate at which colonies
occur in cell j ∈J ; then colonies are independently lo-
cated according to an inhomogeneous Poisson process, with
a given colony occurring in cell j with probability η( j)

∑i∈J η(i) .
We generate foraging kernels for colonies via a simple

Poisson process model. Let λi( j) be the rate of visitation
for colony i ∈ C at cell j ∈J . Let {s,c} be indices which
denote the cell and colony for a random ‘visitation’ event in
the Poisson process (an event where a bee of a given colony

visits a given cell). For a given event, the probability that a
bee from colony i visits site l is:

Pr(s = l|c = i) =
λi(l)

∑ j∈J λi( j)
(1)

Equation 1 gives the foraging kernel for colony i: the fre-
quency of bees from that colony across the landscape. Us-
ing the foraging kernels of all colonies in the landscape, we
can calculate the frequency with which different colonies
will be represented in traps. Let κ be some subset of cells
where traps are located. The probability that a given bee
from colony i visits one of the cells (traps) in κ is:

Pr(s ∈ κ|c = i) = ∑
k∈κ

Pr(s = k|c = i) =
∑k∈κ λi(k)
∑ j∈J λi( j)

The total number of foragers in the landscape is N, and the
number of foragers in colony i is ni. The probability that
a bee selected at random from the population belongs to
colony i is Pr(c = i) = ni

N . From the definition of conditional
probability, the probability that a bee from a given site j be-
longs to colony i is:

Pr(c = i|s = j) =
Pr(s = j|c = i)Pr(c = i)

Pr(s = j)
(2)

Where the denominator is the probability that a bee (from
any colony) visits cell j, and is calculated as

Pr(s = j) = ∑
i∈C

Pr(s = j|c = i)Pr(c = i)

Therefore, the probability that a bee (from any colony) visits
any of a set of cells κ with traps is:

Pr(s ∈ κ) = ∑
i∈C

Pr(s ∈ k|c = i)Pr(c = i)

Given that a bee visits any of a set of cells κ , the probability
that a bee from any colony visits a particular trap k ∈ κ is:

Pr(s = k|s ∈ κ) =
Pr(s = k)
Pr(s ∈ κ)

(3)

To simulate from the joint distribution Pr(s,c|s ∈ κ),
draw k ∈ κ from Pr(s = k|s ∈ κ) (Equation 3), draw a value
of c from Pr(c = i|s = k) (Equation 2), and update N and
ni accordingly. Repeat this process until a stopping rule is
reached, such as the acquisition of a certain number of sam-
ples per trap. Because a bee is removed from the popula-
tion with each trapping event, the conditional probability in
Equation 2 changes during the trapping process. Effectively,
the more bees from a colony that are captured, the less likely
is a subsequent capture from that colony.

Given this model, the expected foraging distance can be
calculated at various levels of organisation. Define di j as the
Euclidean distance between the centroids of the cell j and
and the cell where colony i is located, i.e. as di j ≡ ‖x j −
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δi‖ where x j and δi are vectors, respectively containing the
Cartesian coordinates of centroids for cell j and the cell con-
taining colony i. The expected foraging distance for a colony
can be calculated from the foraging kernel Pr(s|c = i) as
E[di j] = ∑ j∈J ‖x j−δi‖Pr(s = j|c = i). The expected forag-
ing distance for a landscape can be calculated by averaging
over colonies as E[d] =∑i∈C Pr(c= i)E[di j] =∑i∈C

ni
N E[di j].

The distribution of colonies in space and the foraging
kernel of a select colony are determined by the functions
η( j) and λ ( j). For succinctness, we define both as sim-
ple log-linear functions. Let the quality of nesting resources
within cell j be v j; then the rate with which colonies occupy
the cell is η( j) = exp{φv j}. The parameter φ ∈ [0,∞) con-
trols the degree to which colonies are clustered in cells with
high-quality nesting resources. Let f j represent the quality
of floral resources in cell j, and let di j be the geographic
distance from the cell to colony i (as defined in the previ-
ous paragraph). The visitation rate to a cell from the colony
is λi( j) = exp{−βdi j +θ f j}. The parameters β ,θ ∈ [0,∞)

control the degree to which bees are concentrated close to
the colony and in cells with a high forage quality. The over-
all effect is to generate asymmetric foraging kernels which
reflect to a greater or lesser extent the distribution of flo-
ral resources across the landscape (Figure 1A). We note that
these foraging kernels are marginal with respect to individ-
uals: we do not seek to replicate patterns of individual be-
haviour, but instead to represent the long-run frequency of
foragers across the landscape, for the colony as a whole.

Given that the locations of both colonies and bees are
modelled as a function of an underlying resource landscape,
how is this resource landscape determined? We simulate the
spatial distributions of nesting and floral resources as in-
dependent Gaussian random fields under a Brownian vari-
ogram (Schlather et al 2015). Each variogram model has a
single parameter that controls the spatial clustering of re-
sources: parameter values close to zero generate landscapes
where resources of varying quality are more or less evenly
scattered through space (white noise), while parameter val-
ues close to two generate landscapes where resource quality
follows a gradient.

2.2 A model for discrete trapping

The simulation procedure described in section 2.1 uses a
spatially explicit model of forage and nesting resources across
the landscape. In contrast, when estimating foraging ranges
from trapping data we assume that the investigator has no
knowledge of colony sizes or the distribution of nesting and
foraging resources, but can assess forage quality at the exact
location of the trap. In other words, the investigator has a
limited understanding of the landscape and would like to es-
timate foraging ranges from collections at traps. To estimate

colony locations and foraging distances, a simple model con-
siders a set of traps κ in continuous two-dimensional space,
with spatial coordinates xk = {xk

1,x
k
2} and quality of forage

fk for trap k ∈ κ . The occurrence of bees from colony i in
the traps follows a Poisson process with rate λi(k). A sim-
ple form for λi(k) allows the visitation rate to decay with
the distance between trap and colony, to increase with for-
age quality, and also incorporates random trap-specific and
colony-specific variation. For example,

lnλi(k) =−β‖xk−δi‖+θ fk +ζi + εk,

εk ∼N (0,σ2
Σ(ρ)), ζi ∼N (µ,τ2)

(4)

In this model, the set of unknown parameters which must
be estimated is Θ = {δi,β ,θ ,ζ ,ε,µ,σ

2,ρ,τ2}: where δi =

{δ i
1,δ

i
2} are the spatial coordinates of the colony, β con-

trols the distance-decay of the rate with distance between
colony and trap, θ controls the attractiveness of forage qual-
ity at traps, ζi is a colony-specific random intercept centered
around a global intercept µ with standard deviation τ , and
εk is a trap-specific random effect with standard deviation σ

and spatial correlation matrix Σ with parameters ρ . Assume
that some set of colonies C is observed during the course
of the study: given a set y = {yik : k ∈ κ, i ∈ C } of trapped
bees which have been associated with the ith colony through
genetic markers, the likelihood can be written as

L (Θ |y) = ∏
i∈C

(
exp{−Λi(Θ)}

Yi!
∏
k∈κ

λi(k;Θ)yik

)

where Λi(Θ) = ∑k∈κ λi(k;Θ) and Yi = ∑k∈κ yik.
The intuition underlying the model is that traps which

are located further away from a colony receive fewer bees
from that colony, and traps which are located in resource-
rich areas will receive more bees. Depending on the colony
location, and on the relative attractiveness of traps, different
frequencies of bees are expected to occur at traps. By finding
values of parameters which maximise the similarity between
expected and observed frequencies, we can estimate the geo-
graphic locations of colonies, the parameters underlying the
foraging kernel, and the attractiveness of traps.

An important point is that the model described here treats
colony locations as unknown quantities which must be esti-
mated simultaneously with the parameters governing visita-
tion rates. In practice, this is an important consideration as
there is dependence in the joint distribution of colony lo-
cations and the parameters which determine visitation rates
to traps. For example, consider a scenario where three traps
have captured equal amounts of bees (Figure 1B). The traps
have different levels of forage quality, indicated in Figure 1B
by colour (darker shades indicate higher quality). The shape
of the conditional probability distribution of the colony lo-
cation depends on the attractiveness of forage quality to for-
aging bees (parameter θ in Equation 4), and how averse the
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Fig. 1 (A) The foraging kernel of bees (darker areas represent higher visitation) as a function of two parameters, which control the distance that
bees travel (rows) and their affinity for quality forage (columns). The effect of increasing ‘attractiveness’ of forage quality is to focus bee activity
on high-quality regions. The effect of the distance constraint is to focus bee activity on nearby regions. The diamond indicates the colony location.
The points represent a trapping grid; the size of points reflects the relative probability that a bee will show up in that trap. This illustrates how the
model can create asymmetric foraging kernels which depend both on the colony location and the configuration of the landscape. (B) The likelihood
surface for the unknown location of a colony (darker areas represent a higher probability), where bees from the colony have been caught in equal
number at three traps. The trapping grid is shown as coloured points: the size of the points reflects the number of bees captured at the trap, and
the shade of the points represents the forage quality at the trap (low is light, high is dark). The colony is expected to lie close to the low-quality
trap when affinity for forage quality is high. As the distance constraint increases, the expected colony location becomes equidistant to the three
traps. The posterior distribution of the colony location is dependent on the parameters controlling the foraging kernel, and all must be estimated
simultaneously.

bees are to travelling long distances from the colony (pa-
rameter β in Equation 4). In particular, if bees are attracted
to high quality forage and not averse to travelling far, then
the most probable location for the colony is proximal to the
unattractive occupied trap. If bees are averse to travelling far,
then the most probable location for the colony is between the
three occupied traps. An estimation scheme which assumes
that the colony location is the centroid of observed foragers–
or sequentially estimates the colony location/foraging dis-
tances then the parameters governing visitation rates–could
easily be biased if traps differ in attractiveness. In contrast,
the simultaneous estimation of colony locations and trap at-
tractiveness will appropriately account for dependencies be-
tween these parameters.

We are intentionally vague about the definition of ‘for-
age quality’ in this model. In reality, forage quality can be
decomposed into many constituent factors (i.e. floral display
size and species richness), all of which can be included in
the definition of the visitation rate λ (k). Finally, note that
the form of λi(k) in Equation 4 can easily be extended to in-
clude behavioural effects such as trap avoidance, varying ex-
posures (variation in trapping times across traps), etcetera.

We refer the reader to the extensive literature of modelling
of trapping processes (for a good reference see Royle et al
2013b).

2.3 Estimation of average foraging range

We fit the model in section 2.2 by Markov chain Monte
Carlo (see Appendix A for implementation details). Assume
that the Markov chains converge and we end up a total of T
samples from the joint posterior distribution of the parame-
ters Θ . We use the generic notation Θ (t) to indicate the value
of the parameters in sample t ≤ T of the Markov chain. An
estimator of the location of colony i is the expectation of δi
w.r.t. the joint posterior distribution,

δ̂i = T−1
T

∑
t=1

δ
(t)
i ≈ E[δi|Θ−δi ,y] =

∫
δid[Pr(δi,Θ−δi |y)]

For a given Monte Carlo iteration, the expected foraging
distance of the colony can be estimated as the weighted av-
erage of the distance between the colony location and trap
locations, where the weights are the estimated probability of
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a trap being visited by a bee from that colony:

d(t)
i = ∑

k∈κ

‖δ (t)
i − xk‖

λi(k;Θ (t))

Λi(Θ (t))

And then the expectation of di w.r.t. the joint posterior is
approximated as E[di] ≈ T−1

∑
T
t=1 d(t)

i . Intuitively, λi(k) is
an model-based estimate of the visitation rate of colony i to
location k: λi(k) is estimated from the data, and is in turn
used to estimate the average foraging distance. Clearly, this
estimate will be sensitive to the form of the model; but will
be accurate if the model is approximately correct. A more
‘naive’ estimate weights the distance between colony and
trap by the proportion of bees found at that trap; i.e. by re-

placing the weights λi(k;Θ (t))

Λi(Θ (t))
with yik

Yi
.

The estimated average foraging distance for a landscape
is calculated in a similar fashion, but sums visitation rates
across colonies:

l(t) = ∑
i∈C

∑
k∈κ

‖δ (t)
i − xk‖

λi(k;Θ (t))

∑i Λi(Θ (t))

and as before is a model-based estimator which can be aver-
aged over Monte Carlo samples to get an approximate ex-
pectation. A naive estimator would use the proportion of
bees (out of the entire collection of bees) as a weight; i.e.

would replace λi(k;Θ (t))

∑i Λi(Θ (t))
with yik

∑i Yi
.

To estimate the relative difference in foraging distance
between two landscapes where the same trapping scheme
was employed, we estimate the posterior probability that the
first landscape has a greater expected foraging distance than
the second landscape as:

Pr(l1 > l2) =
∫ ∫

I[l1 > l2]dPr(l2|Θ2)dPr(l1|Θ1)

≈ 1
T

T

∑
t=1

I[l(t)1 > l(t)2 ]

where l(t) is defined as above with a subscript that indicates
the landscape, and I is the indicator function (which evalu-
ates to 1 if the inner inequality is true, and 0 otherwise).

2.4 Simulated experiments

We run a number of simulated experiments where we ran-
domly (uniformly) select values of the parameters control-
ling both the locations of colonies and foragers; and the con-
figuration of traps in the landscape. The simulation process
is: (1) simulate parameters for the foraging and nesting land-
scape; (2) simulate a nesting and foraging landscape; (3)
simulate colony locations and parameters controlling for-
ager behaviour; (4) randomly select a trapping setup from
a set of predefined options; (5) simulate the trapping pro-
cess; (6) fit the model and obtain estimates. We simulate

nearly 7,500 simulated experiments and 1 million simulated
colonies. The trapping schemes considered include grid, tran-
sect, cross, and random placement of traps. For each of these
topologies, we vary the density of traps (the number of traps
in a fixed area). The spacing of traps is a function of both
the spatial arrangement and the density, as described in the
introduction. We use the same spatial resolution in all simu-
lated experiments: a landscape raster which is 1000 by 1000
map units, within which is nested a 500 by 500 ‘study area’
where traps are located.

3 Results

Colony locations The accuracy with which a colony loca-
tion is estimated using the methods described above depends
primarily on the true location of the colony in reference to
the trapping grid (Figure 2). Colonies which are proximal to
traps will be located with greater accuracy.

A direct consequence is that the arrangement of traps in-
fluences how much improvement in the accuracy of colony
location can be achieved by increasing the density of traps
within a fixed area. This is a trivial consequence of the fact
that in the limit of trap density, a grid becomes continuous
on a rectangle, a transect becomes continuous on a line, and
so on. In other words, traps arranged in a grid cover the trap-
ping area to a nearly uniform degree and so an increase in
the density of the grid improves accuracy nearly uniformly
over the trapping area. In contrast, increasing density along
the transect increases the accuracy nearly uniformly along
the transect (but little benefits estimation for colonies ly-
ing outside the transect). The probability that a colony is
detected also depends greatly on its spatial location. How-
ever, increasing the density of traps, regardless of the trap ar-
rangement, will increase the spatial scale at which colonies
are detected (albeit at different rates, Supplementary Figure
1).

Average colony foraging distance The average foraging dis-
tance of the colony can only be estimated up to limit de-
termined by the size of the trapping area. The size of the
trapping area in our simulations is 500 map units, and this
asymptote occurs between 400 and 500 map units (Figure
3). Below this asymptote, the direction and magnitude of er-
ror is a function of the true average foraging distance: the
shape of this relationship is influenced by the arrangement
of traps, the density of traps, and the number of captured
bees (Figure 3). For all trap arrangements, there is a positive
bias in the estimated foraging range of the colony, when the
number of captured bees per colony is low. In general, this
bias is inconsistent across values of the true average foraging
distance; but the inconsistency is most extreme for transects
with a low density of traps.
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Fig. 2 The accuracy with which a colony location is estimated, as a function of the spatial location of the colony. Colour at a given coordinate
corresponds to the (average) accuracy with which a colony location at that coordinate was estimated. Shown for four trapping schemes (columns)
across trap densities (rows; 4, 16, and 36 traps).

Average landscape foraging distance Like the estimated av-
erage foraging distances for colonies, estimates for the aver-
age foraging distance for landscapes are constrained by the
size of the trapping grid. In general, an increase in the num-
ber of bees caught in the landscape improves the accuracy
of estimation (Figure 4). When low numbers of bees were
captured, estimates were positively biased. However, the ar-
rangement of traps and density of traps influences whether
this bias is consistent, and also how quickly accuracy in-
creases with number of captured bees. By consistent bias,
we mean that although estimates may be biased upwards,
the amount of bias does not vary across the true values of
foraging range.

Relative foraging distance All trapping arrangements and
densities were able to distinguish between the average for-
aging ranges of landscapes, given that the relative magni-
tude of the difference was extreme enough. However, the
arrangement and density of traps has a strong influence on
the power to accurately detect the direction of the relative
difference in the average foraging range (Figure 5). In gen-
eral, the grid arrangement was slightly more accurate than

other methods at high trap densities. However, all trapping
schemes showed an increase in power with increasing trap
density, and at the highest density all arrangements performed
similarly.

4 Application to Bombus data

In this section, we illustrate how the model developed in
section 2.2 can be used to infer an influence of the environ-
ment on foraging movement, using data from Jha and Kre-
men (2013). These data consist of Bombus vosnenskii for-
agers collected along eight 1-km transects in the California
chaparral. Each transect consisted of five sites, and at each
site the floral community was censused: the average density
of floral resources, the variation in the density of floral re-
sources, and the species richness of flowering plants were
measured (see Jha and Kremen 2013, for details regarding
data collection) for details about data collection). Individual
bees were genotyped at polymorphic microsatellite mark-
ers and assigned to sibships using COLONY (Wang 2004).
The goal of the analysis is to determine whether individual
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foragers will travel longer distances to reach certain types
of floral communities. To facilitate comparison between dif-
ferent methods of analysis, we include only the 70 colonies
with at least two siblings.

By modifying equation 4 to address the research ques-
tion, we model the log capture rate of foragers at a site j that
is di j km distant from colony i:

lnλi( j) = di j(−η +θ1r j +θ2 f j +θ3v j)+ζi + εi j (5)

where for site j the covariates {r j, f j,v j} are the centered
and scaled floral species richness, average floral density, and
coefficient of variation of floral density. In this model, ζi is
the log capture rate at the colony location (i.e., when di j =

0). As the distance from the colony increases, the log cap-
ture rate decreases linearly with slope ∆d(lnλ ). If the floral
assemblage is homogeneous, so that the centered covariates
r j, f j,v j = 0 for all j, then ∆d(lnλ ) = η . The coefficients
θ allow ∆d(lnλ ) to vary continuously for different types of
floral assemblages. The errors εi j are Gaussian and are in-
cluded to account for over-dispersion in the observed counts.

The biological interpretation of this model is that the
number of foraging siblings decreases with the distance from
the colony: the attractiveness of a site to foragers is effec-
tively penalised by the travel distance. At the colony loca-
tion, the capture rate is not influenced by the floral assem-
blage (because bees would be captured at the colony loca-
tion regardless of the surrounding vegetation). As the dis-
tance from the colony increases, the capture rate decreases

at different rates for different types of floral assemblages
(Figure 6A). Thus, floral assemblages that are attractive to
foraging bees are visited despite being far from the colony.
The motivation underlying this model is to express the de-
cline in forager abundance with distance as a function of
characteristics of the floral community.

For the sake of comparison, we also analyse the data us-
ing a method similar to that used in (Jha and Kremen 2013):
a hierarchical regression model which regresses the average
pairwise distance between siblings (d̄i) onto the floral co-
variates averaged across sibling locations (r̄i, f̄i, v̄i). Random
intercepts are included for each transect, so that

E[d̄i] = αsi +βr r̄i +β f f̄i +βvv̄i

where {βr,β f ,βv} are regression coefficients that model the
change in average pairwise distance per unit increase in the
pooled floral covariates. We use Bayesian methods for infer-
ence, but both models could be fit by penalised likelihood.

The two approaches to analysis lead to very different
conclusions. The regression model predicts that bees will
travel greater distances to forage at species-rich sites; and
gives no evidence that the average or coefficient of varia-
tion of floral density have an influence on foraging distance
(Figure 6B; black points are posterior means, black lines are
95% credibility intervals). In contrast, our model of capture
rates predicts that bees will travel greater distances to sites
with few flowering species, and a dense and homogeneous
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distribution of floral resources (Figure 6C). An example of
this type of floral assemblage is one dominated by a mass-
flowering, evenly distributed shrub species.

The contradiction between these two sets of results is
striking. To compare the accuracy of the methods while mak-
ing few assumptions about the true biological process, we
simulated data from a null model where bees were placed
randomly (uniformly) across transect sites, while retaining
the floral covariates and the numbers of bees per colony
from the original data. On a dataset simulated from this null
model, an accurate method of analysis should conclude that
distance travelled does not depend on floral covariates. The
rate of spurious conclusions (Type-I errors) can be assessed
by trials across many datasets simulated from the null model.
In almost all of the trials, the capture rate model gave the
correct conclusion for all floral covariates, and on average
gave parameter estimates close to 0. These results are shown
in Figure 6C: the grey numbers are the proportion of 95%
credibility intervals that contained 0; and the grey density is
the distribution of posterior means from 1000 null simula-
tions. For all parameters, the true rejection rates were above
the expected 0.95.

In contrast, the regression model gave parameter esti-
mates that were biased away from 0, on average. The esti-
mated regression coefficient for richness from the original
data–despite being positive and apparently ‘significant’–fell
well within the distribution of posterior means from the null
simulation, indicating that the positive coefficient should not
be taken as evidence for an effect of floral species richness
on foraging distance. The true rejection rates for the regres-
sion model applied to the null simulations were well below
the nominal 95% (Figure 6B).

Why does the regression model perform so poorly, and
lead to apparently spurious conclusions? One possible rea-
son is that bees are collected across a discrete sample space
and there are a finite number of possible combinations be-
tween the response variable (average pairwise distance) and
the covariates (average site characteristics). For example, a
colony with two captured bees has only one possible spatial
arrangement that gives the maximum possible pairwise dis-
tance of 1 km: the bees would have to be located at opposite
ends of the transect. There are two arrangements that give
the second largest possible pairwise distance of 0.75 km, and
so on. If the sites near the ends of the transect have an above-
average floral species richness, then large pairwise distances
will always be associated with increasing species richness,
regardless of how the foraging bees are actually behaving. In
such a situation, an apparent effect of species richness from
a regression would be an artefact of the spatial configuration
of sampling locations with regard to the floral community.
The model of capture rates developed in this section does
not suffer from these artefacts, because the occurrence of
bees is modelled directly across a discrete sample space.

5 Discussion

Bees are effective pollinators of many flowering plant species
(Fenster et al 2004), and so are an indispensable compo-
nent of terrestrial ecosystems that also provide pollination
services to many crop plants (Kremen et al 2002). Social
bees are generalist pollinators, and can travel long distances
within a single foraging bout (Hagen et al 2011). Bees de-
pend upon floral resources for carbohydrates and protein,
and many plants depend upon bees for transmission of ga-
metes; and thus the spatial scale at which foraging bees reg-
ularly move is extremely relevant to our understanding of
how the landscape impacts the fitness of both parties (Jha
and Dick 2010). From an applied perspective, a knowledge
of the foraging range of pollinators such as bees is of great
importance for the planning of habitat restoration and crop
pollination (Keitt 2009; Lonsdorf et al 2009). The estimation
of colony locations can also be used for estimating popula-
tion densities, and evaluating nesting habitat for conserva-
tion planning.

Here, we have described a spatially explicit, model-based
approach for simulating and estimating foraging range from
siblings genotyped at discrete locations. Although most of
the applications we describe are simple, such a model-based
approach easily accommodates complex effects at both the
landscape- and colony- level. For example, the foraging range
of bees could be modelled as a function of the average forage
quality of the landscape, such that foraging kernels expand
or contract depending on the phenology of plants through-
out the landscape (Jha and Pope, in review). Our approach
accurately depicts the sampling process (repeated captures
at discrete locations) rather than assuming that the trapping
locations are located continuously across the landscape, and
also treats the colony locations as a unknown parameter to
be estimated along with the foraging kernel; rather than se-
quentially estimating the colony location and then the for-
aging kernel. In practice, this is important as the shape of
the foraging kernel can cause traps to vary in attractiveness:
failing to account for this while estimating colony locations
can introduce substantial error.

Using simulated data, we have illustrated that different
schemes vary in their efficacy for estimating foraging range
at various levels of organisation (individuals, colonies). In
general, traps arranged in grids provide the most accurate
estimates of foraging range across scales. However, our sim-
ulations suggest that discrete sampling methods will provide
low accuracy in the estimates of individual foraging ranges,
or the average foraging distances of colonies; with anything
less than unrealistic densities of traps and captured siblings.
On the other hand, as long as sufficient numbers of bees and
colonies are captured within a landscape, the average forag-
ing range across the landscape can be estimated with reason-
able accuracy, or at least with consistent bias for all trapping
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Fig. 6 (A) An hypothetical illustration of how visitation can decline across distance at rates that depend on the floral community, following the
model in equation 5. The parameter θx controls how a single floral covariate x influences the decline in visitation with distance from the colony.
In this example, x = 1, exp{ζ} = 1, and η = −1. Negative values of θx imply that floral communities with x > 0 will be visited relatively less
frequently at far distances. (B-C) Summary of results from the regression model (panel B) and the capture rate model (panel C) described in
section 4. For key parameters, posterior means and 95% credibility intervals are shown as black points/lines. Positive values imply that foragers
will travel further for increasing values of the covariate. The grey shaded regions show the density of posterior means across 1000 simulations
from a null model where bees are distributed uniformly at random. The grey numbers give the proportion of 95% credibility intervals that contain
0 across these null simulations.

methods. Even small numbers of traps can be effective at de-
tecting differences in foraging range across landscapes, and
our simulations suggest diminishing returns with increas-
ing trap density with regard to estimation of foraging ranges
at different scales. However, increasing the density of traps
may substantially increase the probability of detecting dis-
tant colonies. If the goal of estimation is a measure of colony
density within a landscape, even a transect may provide rea-
sonable spatial coverage with a sufficient density of traps.

Using a dataset of wild bumble bee genotypes from the
Californian chaparral (Jha and Kremen 2013), we gave an
example of how a transect design with a low trap density can
be used to infer foraging behaviour across a heterogeneous
landscape. Our analysis of these data suggests that bum-
ble bees travel further to forage on dense, less variable, less
speciose floral communities. Areas dominated by an evenly
distributed, mass-flowering species are relatively conspic-
uous, and may encourage return trips by foraging bees by
consistently providing pollen and nectar resources. Previous
work has suggested that in variable environments, foraging
bumble bees act to increase consistency in rewards while
reducing the time spent searching (Biernaskie et al 2009).
The strongest effect in our analysis is a preference of bees
for the sites with the least variability in floral density. Such
sites would have a consistent spatial distribution of floral re-
sources, and so would reduce the time spent by bees in intra-
site movement. Most strikingly, our method of analysis gives
very different results from a regression-based approach that
found an increase in foraging distance to species-rich flo-
ral communities. By simulation, we show that the conclu-
sion from the regression analysis could easily result from

a null model where foragers are located uniformly at ran-
dom across transect sites. In contrast, the model developed
in this work consistently returns correct results. We spec-
ulate that the poor performance of the regression approach
under the null model is due to a chance association between
high floral species richness and relatively distant transect lo-
cations. Collections of bumble bee genotypes from the wild
often contain few bees per colony, and we conclude that the
choice of the method used to analyse these sparse data can
have a large influence on subsequent biological inference.
Care must be taken to employ a model that makes realistic
assumptions about the sampling process.

In this work, we are influenced by the vast applied lit-
erature on the design and analysis of trapping experiments
stretching back to the 1940s (see Worton 1987; Royle et al
2013b), especially recent work on spatially-explicit capture-
recapture models (Royle et al 2013a). Our contribution is to
develop a simulation framework for the particular case of
trapping social bees, to develop inferential methods for data
matching this framework, and to demonstrate that the gen-
eral approach can be effective for answering certain ques-
tions and ineffective for others. The tools we present here
will be useful to those planning to use these types of meth-
ods. In particular, the R and C++ programs used to simu-
late data are available online (github.com/nspope/foraging).
These programs are implemented as classes and designed in
an object-oriented fashion; the user can define novel meth-
ods that define the visitation rates of foragers, the spatial
arrangement of traps, and the stopping rule. User-defined
methods interface easily with the existing code, allowing a
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great deal of flexibility in terms of the simulated study de-
sign.

We do not expect the results we present above to be
relevant to every study; however, we suggest that scientists
use simulation to investigate the efficacy of a study design
before deploying it. Given that sampling genetic material
across many colonies and landscapes involves a great deal
of effort and also frequently results in substantial mortality
of bees, it is essential to try to maximise the amount of in-
formation carried per bee. As an example, in our simulations
we observe that a density of 16 traps provides equivalent re-
sults to trap densities twice as large. These results imply that
savings in human effort and bee mortality can be achieved
by optimising sampling design with regard to the research
question, and our worked example with B. vosnesenskii il-
lustrates that a small but efficient sampling scheme may be
deployed effectively across multiple landscapes. Simulation
tools, such as the ones we develop here, can provide rough
estimates of the sampling effort that is optimal for these ap-
plications. Finally, we note that with any estimation method,
it is important to characterise the error associated with spe-
cific assumptions. In the context of this work, we have pre-
sented a method which tries to generate estimates of forag-
ing range by integrating over uncertainty in the location of
the colony and the shape of the foraging kernel. A source of
error which we have not explored here (but we believe to be
extremely important) is the uncertainty associated with sib-
ling assignment by probabilistic genetic methods. A second
topic which we do not address in this paper, but we feel is
deserving of attention, is the use of extant land classification
maps in study design and analysis. We will address these
topics in a future study.
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A Appendix. Details of implementation

We fit the models described in Sections 2.2 and 4 by Markov chain
Monte Carlo, using the Bayesian computational platform Stan (Car-
penter et al 2015). Stan uses a variant of a technique known as Hamil-
tonian Monte Carlo to generate proposals that are relatively far apart
in parameter space yet have a high acceptance probability, and so is
quite efficient for fitting high-dimensional models with relatively short
Markov chains. We use multiple Markov chains per model fit, and
monitor mixing and convergence visually and with the scale-reduction
factor of Gelman and Rubin (1992). Initial runs suggested that models

converge quickly, within a few hundred iterations. For our simulation
experiments, we automatically flagged model fits that showed signs of
not converging (using a threshold for the scale reduction factor), and
also visually inspected a random sample of fitted models. The STAN
code implementing our model is given in the supplementary material.
We use vague log-normal priors for parameters controlling the shape of
the foraging kernel, half-normal priors for variance components, and
uniform priors for colony locations (with support on the rectangular
area of the landscape used for simulations).
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