PUBLICATIONS

2018

Lee, J.-H., Mand, M.R., Kao, C.-H., Zhou, Y., Ryu, S.W., Richards, A.L., Coon, J.J., and Paull, T.T. (2018). ATM directs DNA damage responses and proteostasis via genetically separable pathways. Science Signaling 11, pii: eaan5598. [pubmed]

2017

Hewitt, S.L., Wong, J.B., Lee, J.H., Nishana, M., Chen, H., Coussens, M., Arnal, S.M., Blumenberg, L.M., Roth, D.B., Paull, T.T., and Skok, J.A. (2017). The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect. Cell Reports 21, 979-993. [pubmed]

Arora, S., Deshpande, R.A., Budd, M., Campbell, J., Revere, A., Zhang, X., Schmidt, K.H., and Paull, T.T. (2017) Genetic separation of Sae2 nuclease activity from Mre11 nuclease functions in budding yeast. Molecular and Cellular Biology 37: e00156-17. [pubmed]

Myler, L.R., Gallardo, I.F., Deshpande, R.A., Gonzalez, X.B., Kim, Y., Paull, T.T., and Finkelstein, I.J. (2017). Single-molecule imaging reveals how Mre11-Rad50-Nbs1 initiates DNA break repair. Molecular Cell 67, 891-898. [pubmed]

Deshpande, R., Lee, J.-H., and Paull, T.T. (2017). Rad50 ATPase activity is regulated by DNA ends and requires coordination of both active sites. Nucleic Acids Research 45, 5255-5268. [pubmed]

Zhou, Y., Lee, J.H., Jiang, W., Crowe, J.L., Zha, S., and Paull, T.T. (2017). Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM. Molecular Cell 65, 91-104. [pubmed]

2016

Deshpande, R.A., Lee, J.H., Arora, S., and Paull, T.T. (2016). Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts. Molecular Cell 64, 593-606. [pubmed]

Hoa, N.N., Shimizu, T., Zhou, Z.W., Wang, Z.Q., Deshpande, R.A., Paull, T.T., Akter, S., Tsuda, M., Furuta, R., Tsutsui, K., et al. (2016). Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes. Molecular Cell 64, 580-592. [pubmed]

Myler, L.R., Gallardo, I.F., Zhou, Y., Gong, F., Yang, S.H., Wold, M.S., Miller, K.M., Paull, T.T.*, and Finkelstein, I.J*. (2016). Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proceedings of the National Academy of Sciences of the United States of America 113, E1170-1179. * co-contributing [pubmed]

Broderick, R., Nieminuszczy, J., Baddock, H.T., Deshpande, R.A., Gileadi, O., Paull, T.T., McHugh, P.J., and Niedzwiedz, W. (2016). EXD2 promotes homologous recombination by facilitating DNA end resection. Nat Cell Biol. 18, 271-280. [pubmed]

2015

Zhang, J., Tripathi, D., Jing, J., Alexander, A., Kim, J., Powell, R., Dere, R., Tait-Mulder, J., Lee, J-H., Paull, T.T., Pandita, R.K., Charaka, V., Pandita, T., Kastan, M., and Walker, C. (2015). ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS. Nature Cell Biol. 17:1259-1269. [pubmed]

Sarangi, P., Steinacher, R., Altmannova, V., Fu, Q., Paull, T.T., Krejci, L., Whitby, M.C., and Zhao, X. (2015). Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genetics 11, e1004899. [pubmed]

Hoa, N.N., Kobayashi, J., Omura, M., Hirakawa, M., Yang, S.H., Komatsu, K., Paull, T.T., Takeda, S., and Sasanuma, H. (2015). BRCA1 and CtIP Are Both Required to Recruit Dna2 at Double-Strand Breaks in Homologous Recombination. PloS One 10, e0124495. [pubmed]

Zhou, Y., and Paull, T.T. (2015). Direct measurement of single-stranded DNA intermediates in mammalian cells by quantitative polymerase chain reaction. Anal Biochem 479, 48-50. [pubmed]

Parameswaran, B., Chiang, H.C., Lu, Y., Coates, J., Deng, C.X., Baer, R., Lin, H.K., Li, R., Paull, T.T., and Hu, Y. (2015). Damage-induced BRCA1 phosphorylation by Chk2 contributes to the timing of end resection. Cell Cycle 14, 437-448. [pubmed]

2014

Zhou, Y., and Paull, T.T. (2014). Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Research 42(3):e19. [pubmed]

Lee, J.-H., Guo, Z., Myler, L.R., Zheng, S., and Paull, T.T. (2014). Direct activation of ATM by resveratrol under oxidizing conditions. PloS ONE 9(6):e97969. [pubmed]

Makharashvili, N., Tubbs, A.T., Yang, S.H., Wang, H., Barton, O., Zhou, Y., Deshpande, R.A., Lobrich, M., Sleckman, B.P., Wu, X., and Paull, T.T. (2014). Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol. Cell 54(6): 1022-1023. [pubmed]

Deshpande, R., Williams, G.J., Limbo, O., Williams, R.S., Kuhnlein, J., Lee, J.-H., Classen, S., Guenther, G., Russell, P., Tainer, J.A., and Paull, T.T.(2014). ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling. EMBO J.33(5):482-500. [pubmed]

2013

Fu, Q., Chow, J, Bernstein, K.A., Makharashvili, N., Arora, S., Lee, C-F., Person, M., Rothstein, R., and Paull, T.T. (2013) Phosphorylation-regulated transitions in oligomeric state control the activity of the Sae2 DNA repair enzyme. Mol. Cell. Biol. 34(5):778-793. [pubmed]

Cannon, B., Kuhnlein, J., Yang, S.H., Cheng, A., Schindler, D., Stark, J.M., Russell, R., and Paull, T.T. (2013). Visualization of local DNA unwinding by Mre11-Rad50-Nbs1 using single-molecule FRET. Proceedings of the National Academy of Sciences of the United States of America 110(47):18868-73. [pubmed]

Zhou, Y., and Paull, T.T. (2013). DNA-dependent Protein Kinase regulates DNA end resection in concert with Mre11-Rad50-Nbs1 (MRN) and Ataxia-Telangiectasia-Mutated (ATM). J. Biol. Chem. 288(52):37112-25. [pubmed]

Bowen, C., Ju, J.H., Lee, J-H., Paull, T.T., and Gelmann, E.P. (2013). Functional Activation of ATM by the Prostate Cancer Suppressor NKX3.1. Cell Reports 4, 516-529. [pubmed]

Lee, J-H., Mand, M.R., Deshpande, R.A., Kinoshita, E., Yang, S-H., Wyman, C., and Paull, T.T. (2013). Ataxia Telangiectasia-Mutated (ATM) Kinase Activity Is Regulated by ATP-driven Conformational Changes in the Mre11/Rad50/Nbs1 (MRN) Complex. J Biol Chem 288, 12840-12851. [pubmed]

Yang, S-H., Zhou, R., Campbell, J., Chen, J., Ha, T., and Paull, T.T. (2013) The SOSS1 single-stranded DNA binding complex promotes DNA end resection in concert with Exo1.  EMBO J 32(1):126-39. [pubmed]

2012

Daniel, J.A., Pellegrini, M., Lee, B.S., Guo, Z., Filsuf, D., Belkina, N.V., You, Z., Paull, T.T., Sleckman, B.P., Feigenbaum, L., Nussenzweig, A. (2012) Loss of ATM kinase activity leads to embryonic lethality in mice. J Cell Biol 198(3): 295-304. [pubmed]

Gatei, M., Jakob, B., Chen, P., Kijas, A.W., Becherel, O.J., Gueven, N., Birrell, G., Lee, J.H., Paull, T.T., Lerenthal, Y., Fazry, S. Taucher-Scholz, G., Kalb, R., Schindler, D., Waltes, R., Dork, T., and Lavin, M. F. (2011). ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. J Biol Chem 286, 31542-31556. [pubmed]

2011

Della-Maria, J., Zhou, Y., Tsai, M.S., Kuhnlein, J., Carney, J., Paull, T.T., Tomkinson A (2011) hMre11/hRad50/Nbs1 and DNA ligase III{alpha}/XRCC1 act together in an alternative non-homologous end joining pathway. J Biol Chem. 286(39):33845-33853. [pubmed]

2010

Nicolette, M.L., Lee, K., Guo, Z., Rani, M., Chow, J.M., Lee, S.E. and Paull, T.T. (2010) A direct role for Mre11/Rad50/Xrs2 and Sae2 in 5’ strand resection of DNA double-strand breaks. Nature Structural and Molecular Biology 17(12):1478-85. [pubmed]

Guo, Z., Kozlov, S., Lavin, M.F., Person, M.D., and Paull, T.T. (2010) ATM Activation by Oxidative Stress. Science 330:517-521. [pubmed]

Shim, E.Y., Chung, W.H., Nicolette, M.L., Zhang, Y., Davis, M., Zhu, Z., Paull, T.T., Ira, G., and Lee, S.E. (2010). Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J 29, 3370-3380. [pubmed]

Lee, J.H., Goodarzi, A.A., Jeggo, P.A., and Paull, T.T. (2010) 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J. 29:574-585. [pubmed]

2008

Hopkins, B.B., and Paull, T.T. (2008) The P. furiosus Mre11/Rad50 complex promotes 5’ strand resection at a DNA double-strand break. Cell 135: 250-260. [pubmed]

Dupre, A., Boyer-Chatenet, L., Sattler, R.M., Modi, A.P., Lee, J.H., Nicolette, M.L., Kopelovich, L., Jasin, M., Baer, R., Paull, T.T., and Gautier, J. (2008). A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat. Chem. Biol. 4, 119-125. [pubmed]

2007

Lengsfeld, B.M., Rattray, A.J., Bhaskara, V., Ghirlando, R., and Paull, T.T. (2007). Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28: 638-651. [pubmed]

Bhaskara, V., Dupre, A., Lengsfeld, B., Hopkins, B. B., Chan, A., Lee, J. H., Zhang, X., Gautier, J., Zakian, V. A., and Paull, T. T. (2007). Rad50 Adenylate Kinase Activity Regulates DNA Tethering by Mre11/Rad50 complexes. Mol. Cell 25: 647-661. [pubmed]

2005

Zhang, X. and Paull, T.T. (2005) The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae. DNA Repair 4: 1281-1294. [pubmed]

Lee, J.H. and Paull, T.T. (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 308: 551-554. [pubmed]

2004

Lee, J.-H. and Paull, T.T. (2004). The Mre11/Rad50/Nbs1 complex directly promotes ATM kinase activity. Science 304: 93-96. [pubmed]

Moncalian, G., Lengsfeld, B., Bhaskara, V., Hopfner, K.P., Karcher, A., Alden, E., Tainer, J.A. and Paull, T.T. (2004) The rad50 signature motif: essential to ATP binding and biological function. J Mol. Biol. 335: 937-951. [pubmed]

2003

Lee, J.-H., Ghirlando, R., Bhaskara, V., Hoffmeyer, M.R., Gu, J. and Paull, T.T. (2003) Regulation of Mre11/Rad50 by Nbs1: effects on nucleotide-dependent DNA binding and association with ATLD mutant complexes. J. Biol. Chem. 278: 45171-45181. [link]