

Living up to Life

Multiphoton Microscopy

Living up to Life

F.- Helmchen, W. Denk, Deep tissue two-photon microscopy, Nat. Methods 2, 932-940

Typical Samples – Small Dimensions & Highly Scattering

Living up to Life

- l_s ~ 50-100 μm (@ 630 nm)
- $\rm I_s \sim 200 \ \mu m$ (@ 800 nm)

T. Nevian Institute of Physiology University of Bern, Switzerland

F.- Helmchen, W. Denk Deep tissue two-photon microscopy. *Nat. Methods* 2, 932-940

• Today main challenge:

To go deeper into samples for improved studies of cells, organs or tissues, live animals Less photodamage, i.e. less bleaching and phototoxicity

• Why is it possible?

Due to the reduced absorption and scattering of the excitation light

- Achievable depth: $\sim 300 600 \ \mu m$
- Maximum imaging depth depends on:
 - Available laser power
 - Scattering mean-free-path
 - Tissue properties
 - Density properties
 - Microvasculature organization
 - Cell-body arrangement
 - Collagen / myelin content
 - Specimen age
 - Collection efficiency

Acute mouse brain sections containing YFP neurons,maximum projection, Z stack: 233 μm

Courtesy: Dr Feng Zhang, Deisseroth laboratory, Stanford University, USA

A 3-dimensional imaging technique in which 2 photons are used to excite fluorescence emission

Simultaneous absorption of 2 longer wavelength photons to excite a fluorochrome, emission as with 1-photon

2-photon: excitation probability - importance of high NA

- n_a : probability of excitation
- δ : excitation cross section
- *P_{avg}*: average power incident light (peak power)
- τ : pulsewidth
- *f*: repetition rate
- NA: Numerical aperture
- *h*: Planck's constant
- c: Speed of light
- λ : Wavelength

MP excitation is favoured when we have:

- Molecules with large cross-section
- High peak power
- High-NA objective lenses

Two photon microscopy fluorescence yield – non-linear process

Living up to Life

$$Fl \cong \frac{\left\langle P_{avg} \right\rangle^2}{\tau \cdot f}$$

- FI = fluorescence photons/sec P = average laser power τ = pulse width \rightarrow fs/psec
- f = laser repetition rate

Efficiency of excitation increases with the square of the laser power

1-Photon 2-Photon

label is excited only at the focus of the beam where probability of 2P event is highest

No out-of-focus-fluorescence:

- No need of confocal aperture
- Dye bleaching and photo
 toxicity limited to the plane
 of focus

Confocal vs. Multiphoton microscopy

Two-photon optical probe interacts with the sample *only* in the focus region.

2-photone and 1-photon excitation at the same time In dye solution

Resolution in 2-Photon Microscopy is ~ 2x worse compared to Confocal Microscopy

				Confocal	2- (a) Illumination	2 (b) Detection	(c) Confocal
NA=1,4	Wavelength	Lateral resolution	Axial resolution		0-	0-	0
n=1,51	Λ (nm)	(x-y, µm)	(x-z, µm)			-1	-1- 0
Confocal	488	0,16	0,52		-2 -0.75 -0.5 -0.25 0 0.25 0.5 0.75	-2 -0.75 -0.5 -0.25 0 0.25 0.5 0.75	-2 -0.75 -0.5 -0.25 0 0.25 0.5 0.75
2-photon	900	0,29	0,97	2-Photon	(a) Iwo-photon	1.	
					o.	•	•
				Calculated PSFs	-1		-1 -2 -2 -0.75-0.5-0.25 0 0.25 0.5 0.75

taken from "Confocal and Two Photon Microscopy", ed. Alberto Diaspro, 2002

Optical resolution of Two Photons imaging

Living up to Life

Geometry of MP illumination spot

Optical resolution: Conventional vs. Confocal Living up to Life

Conventional Microscopy

- Wavelength of light
- Numerical aperture

Confocal Microscopy

- Pinhole size
- Geometry of the probing beam spot

$$r_{xy} = \frac{0.61 \cdot \lambda}{NA}$$

$$r_{xy} = \frac{0,46\lambda}{NA}$$
 $r_z = \frac{1,4 \text{ n}\lambda}{NA^2}$

 $NA = nsin\alpha$

n = 1 for air n = 1.518 for oil immersion Leica Opt

Optical resolution: Confocal vs. Two photons Living up to Life

Confocal Microscopy:

$$r_{xy} = \frac{0.46\lambda}{NA}$$
 $r_z = \frac{1.4 \text{ n}\lambda}{NA^2}$

Example:

NA=1,4	Wavelengt h λ (<i>nm</i>)	Lateral resolution	Axial resolution	
n= 1,51	11 7 0 (10110)	(x-y, µm)	(x-z, µm)	
Confocal	488	0,16	0,52	
2-photon	900	0,29	0,97	

In two photon microscopy, lower resolution due to longer wavelength

Rubart , M., Two-Photon Microscopy of Cells and Tissue, Circ. Res. 2004;95;1154-1166

Comparison of penetration: UV – IR (internal detectors)

Eye of zebrafish larvae (stained with DAPI)

Image size (xz): 125 μm x 125 μm - Objective: 63x 1.2 Water - Detection range: 400nm - 500nm

2-Photon excitation is a very very rare event!

In bright day light a good one- or two-photon absorber absorbs in a 1-photon process: once a second in a 2-photon process: every 10 million years

Solution:

Use of laser sources focused beam

The probability of a molecule to absorb 2 photons simultaneously is expressed as the 2-photon cross section

Multiphoton Microscope setup

Living up to Life

Continuous lasers vs. pulsed lasers

Living up to Life

Pulsed mode

Two photon excitation in Lucifer yellow at 750nm wavelength (same power) Courtesy: Magendie institute, PICIN, P. Legros, Bordeaux, France

3 conditions necessary for 2P excitation

 \rightarrow

- High intensity
- → - High cross section →
- Short pulses:

Hence in focal point Not always double 1P Pico or Femto second laser

Continuous mode

Typical Tuning Curve IR Laser

Coherent Chameleon Vision II

Spectra Physics MaiTai DeepSee

*calculated using specified values for average power and pulse width for each laser with dispersion compensation

Ultra Short Pulses

Living up to Life

Notion of fluorescence emission rate and cross section

One photon of fluorescence is generated by 2 incident photons

With continuous laser the fluorescence emission rate (f) is proportional to the square of intensity

f : photons/seconde I² : Intensity of laser σ: cross section in GM (Göppert-Mayer) 1 GM= 10⁻⁵⁰ cm⁴/photons

The two photon cross section is the probability of a molecule to absorb 2 photons simultaneously

 σ (cross section) is dependent on the wavelength and in general between 1 and 100 GM GFP = 10 GM Qdots = $10^4 - 10^5$ GM

 $f_m = \frac{1}{2} \sigma (t.F) - \frac{1}{2} I_m^2$

t : Pulse duration (s) F : Frequency (Hz) f_m : Average fluorescence emission rate I m² : Average intensity t. I : Intensity per pulse (peak power) σ: cross section in GM (Göppert-Mayer)

Because I_m = t.F. I

Examples $t = 10^{-13} s$ $F = 10^8 Hz \rightarrow (t.F)^{-1} = 10^5$ To compare $(t.F)^{-1} = 1$ for continuous laser

So for equal power we have 10⁵ time more excitation of fluorophore with pulsed laser

Group Delay Dispersion (GDD)

Living up to Life

Amended, from Pawley, Chapter 28 Denk et al., Multi-Photon Excitation in Laser Scanning Microscopy

Principle of Precompensation

Performance comparison Dispersion Compensation – On / Off

Living up to Life

Objective lens: 20 x 1,0 Sample: Brain Slice, GFP @ 920 nm Chameleon Vision

Mean intensity approx. 2,5 x higher

MP-imaging for highly scattered tissue

Confocal Microscopy:

 pinhole aperture rejects the out of focus fluorescence but also scattered light
 → difficult to image highly light scattering tissue like thick brain slices

Multi-photon Microscopy:

- no confocal pinhole required because all fluorescent light originates from the focal spot;
 → detectors can be placed as close as possible to the specimen (NDDs)
- enables also scattered photons to be collected
- much higher photon collection efficiency compared to confocal microscopy
- \rightarrow Large area detector

- Descanned pathway can be used but clipping at pinhole
- Strategy: collect as many photons as possible

 \rightarrow i.e. if descanned detection: open pinhole completely!

- Non-Descanned-Detection:
 - Large-area detectors (predominantly PMTs)
 - epi-detection
 - *trans*-collection high-NA Condensor, prefferably oil (!)

Photon Collection Efficiency - Internal vs. NDDs

Mouse brain slice:	~ 20 µm (center plane)
Detection range:	500 – 550 nm
PMT:	950 V
Objective:	20 x 1.0 W

Fluorochromes: TPE - Overview 1

Fluorochrome	TPE absorption maximum (nm)	Absorption shift TPE vs. 2 × OPE (nm)	TPE emission maximum (at excitation) (nm)	Emission shift TPE vs. OPE (nm)	
Dyes					
Acridine Orange	837 > 882 >> 981	-	548 (837)	-	
aminomethylcoumarin methylcoumarin	703 < 722 >> 863	+4	458 (820)	+ 11	
Bodipy FL*	920 < < 972	-38	526 (972)	+15	
Bodipy TRoad	1032 < < 1108	-70	684 (1032)	+61	
DAPI	685 > 697	-31	467 (685)	+6	
DCF2 (H ₂ DCFDA) ^a	1065	+65	532(1065)	±0	
Hoechst 33342	660 > 715	-40	497 (660)	+10	
lissamine rhodamine	837 >> 1116	-24	600 (837)	+5	
PhenGreen-FL	1074	+90	435 << 522 (1074)	+5	
PhenGreen-FL + Fe	1074		440 (1074)		
propidium iodide	989 > 1015 >> 1099	-13	612 << 657 (981)	-5, +40	
quinacrine	678 (697)	-168	517 (837)	+14	
rhodamine 123	913 (1090)	-101	536 (947)	+7	
SNARF-1	< 837	-200	622 < < 660 (837)	+10	
Organelle trackers					
ER-Tracker white/blue	728	-20	586 (728)	+11	
LysoTracker Yellow	972	-104	435 << 552 (981)	±0	
LysoTracker Red	1010 < 1100	_	605(1032)	+15	
MitoTracker Red	1133	-22	444 (1065) << 608 (1133)	+9	
Antibody-conjugated					
Alexa Fluor 488	985	+3	530 (985)	+15	
Alexa Fluor 546	1028	-78	582 (1028)	+13	
Alexa Fluor 594	1074	-114	619 (1074)	+9	
Cv2-IgG	837 < 905 > 981	-73	520 (905)	+14	
Cv3-IgG	1032	-84	578 (1032)	+5	Bestvater et el.
F-DTAF-IgG	< 820: 820 > 837 > 972	-8	527 (981)	+7	Two-photon fluorescence absorption and
FITC-IgG	947	-39	530 (947)	+5	emission spectra of
RedX-IgG	845 >> 1108	_	602 (854)	±0	dves relevant for cell imaging
TexasRed-IgG	1108 < (> 1150)	_	616 (837)	±0	Journal of Microsconv Vol 208 Pt 2
TexasRed-Phalloidin	>1150	-	611 (837)	+9	November 2002, pp. 108–115

^aDissolved in DMSO.

TPE cross-sections of various fluorochromes

Bestvater et el. Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging Journal of Microscopy, Vol. 208, Pt 2 November 2002, pp. 108–115

Fluorochromes: TPE - Overview 2

Table 1. Fluorophores and Chromophore	es for Two-I	Photon Excitati	on			
Fluorophores/Choromophores Φ^*	* (GM)	2PE ^b (nm)	Em. (nm)	Note	References	_
Calcium indicators						-
Fluo -3, -4, -5F, 4FF et al.		810°	520-530		(Yasuda et al., 2004)	
Oregon Green BAPTA -1, -2 et al.		810°	520		(Yasuda et al., 2004)	
Calcium green-1 + Ca ²⁺ ; Calcium 30), 2	820	530		(Xu and Webb, 1996; Xu et al., 1996)	
green-1 – Ca ²⁺						
Fura-2 + Ca ²⁺ ; Fura-2 - Ca ²⁺ 6,	0.2	800	505		(Wokosin et al., 2004)	
Indo-1 + Ca ²⁺ ; Indo-1 - Ca ²⁺ 3.5	5, 1.5	700	400		(Xu and Webb, 1996; Xu et al., 1996)	
Quantum dots						
Quantum dots up	p to 47,000	broad	variable		(Larson et al., 2003)	
Fluorescent proteins						
eCFP 10	0-200	800-900	505		(Zipfel et al., 2003)	
eGFP 10	0-200	900-1000	510		(Zipfel et al., 2003)	
eYFP 10	0-200	930-1000	530		(Zipfel et al., 2003)	
mRFP, mCherry		1030°	610	Ytterbium-doped laser	(Campbell et al., 2002; Shaner	
					et al., 2004)	
Photoswitchable fluorescent proteins (a	see also Lu	kyanov et al., 2	005)			
paGFP		750 ⁹	515		(Patterson and Lippincott-Schwartz,	
					2002; Schneider et al., 2005)	
Kaede		730 ^d	520→580	green to red; tetramer	(Ando et al., 2002)	
KFP1		1120 ^d	600	tetramer	(Chudakov et al., 2003)	
Dronpa		780 ^{d.e} , 1010 ^{d.f}	520	reversible	(Ando et al., 2004; Habuchi	
					et al., 2005)	
psCFP		800 ^d	470→510	cyan to green	(Chudakov et al., 2004)	
PA-mRFP		760 ^d	605		(Verkhusha and Sorkin, 2005)	
KikGR		760°	$520 \rightarrow 590$	green to red; tetramer	(Tsutsuiet al., 2005)	
Dendra		960 ^d	505→575	green to red	(Gurskaya et al., 2006)	
mEosFP		780 ^d	520→580	green to red	(Wiedenmann et al., 2004)	
Caged glutamate						
MNI-glutamate 0.0	06	730			(Matsuzaki et al., 2001)	
Caged calcium						
DM-nitrophen 0.0	013	730		K _d : 2 nM [*] , 1.5 mM ⁴	(Brown et al., 1999; Momotake	
-					et al., 2006)	Svoboda & Ryohei
Azid-1 1.4	4	700		K _d : 230 nM ^h , 0.12 mM ⁱ	(Brown et al., 1999; Momotake	Principles of Two-Photon Excitation Microscop
					et al., 2006)	and its Applications to Neuroscience
NDBF-EGTA 0.6	6	710		K _d : 14 nM ^b , 1 mM ⁱ	(Momotake et al., 2006)	Neuron 50, 823 – 839, June 15, 2006

TP cross-section of standard FPs

Blab et al., 2001 Two-Photon Excitation Cross-Sections of the Autofluorescent Proteins. Chemical Physics Letters 350: 71-7

TCS SP 5 MP: Typical Setup - inverted

- 1) IR Laser (Mai Tai DeepSee)
- 2) Safety Box
- 3) EOM (Driver)
- 4) Beam Routing (direct coupling)
- 5) Scanhead
- 6) DMI 6000 Microscope Stand
- 7) NDD Detection Unit
- 8) NDD: RLD
- 9) NDD: TLD

Second Harmonic Generation (SHG)

- SHG is a nonlinear scattering process that conserves energy and results in the SHG λ exactly half of the illumination λ'
- involves virtual transitions in which no energy is absorbed
- 2 photons "simultaneously" scattered, resulting in "frequency doubling"
- In contrast 2PE involves absorption (real transition) and excitation of molecules
- SHG = $\lambda_{\text{incident}}/2$
- Investigate with spectrophotometer-PMT or NDD

SHG: how it works – lite

Incident beam polarizes illuminated matter

Living up to Life

non-centrosymmetric organization oscillating dipoles

Simultaneous scattering

λ/2

SHG – direction & structures

- Predominantly forward-directed emission
 - i.e. trans-detection
 - High NA condensor (1,4 oil)
 - 2nd objective (on DMI)
 - backscattered possible
- Visualize well-ordered structures:
 - Collagen fibers
 - Microtubules
 - Muscle myosin
 - Membrane potential via dyes

SHG – images

Living up to Life

SHG combined with fluorescence: Collagen fibrils (SHG, grey), Macrophages (Fluorescence, green & red)

Striation pattern of murine heart

QY

0.9

0.9

0.9

0.6

0.2

0.7

0.9

Fluorophore	ε (cm ⁻¹ M ⁻¹)	Fluor
Oregon Green [®] 488	87,000	Oreg Green [®]
BODIPY FL	91,000	BODIP
FAM	79,000	FAN
JOE	71,000	JOI
TAMRA	103,000	TAM
ROX	82,000	ROZ
Texas Red	139,000	Texas

TP cross-section of standard FPs

Blab et al., 2001 Two-Photon Excitation Cross-Sections of the Autofluorescent Proteins. Chemical Physics Letters 350: 71-7

Examples of cross section in 2P excitation

MICROSYSTEMS

Multiphoton excitation of selected dyes

MICROSYSTEMS

	780 nm		820 nm		1064 nm	
Cell Wall Stain	Calcofluor White	440/500- 520	Calcofluor White	440/500- 520		
Nucleic Acid	DAPI, Hoechst	350/470	DAPI (885,970	350/470		
Stains		350/460	3P), Hoechst	350/460	D	
			Ethidium Bromide	518/605	Propidium Iodide	530-615
	Feulgen	480/560	Feulgen	480/560	Feulgen	480/560
Cell Viability	Fluorescein Di Acetate	495/520	Fluorescein Di Acetate	495/520		
Calcium	Indo 1 (720	340-365	, lootato			
	885 3P)	/400-480				
	Fura 2 (720)	340-				
		380/512				
	Calcium	488/530,				
	Green/Texas Red	596/620				
	(770)					
	Calcium Green	488/530				
Protein Conjugates	AMCA	431/498				
	FITC	490/525	FITC	490/525		
	CY2 (760 nm)	489/506	CY2	489/506	BodipyR6G	528/547
	CY3 (760 nm)	550/570	CY5	649/670	Oregon Green 514	506/526
	CY5 (760 nm)	649/670	TRITC	541/572	TRITC	541/572
	Texas Red	596/620			Texas Red	596/620
					CY3	550/570
Gene Expression	GFPuv	395/509	S65T (860)	488/507	S65T	488/507
Mito Tracers	Rhodamin 123	507/529	Rhodamin 123	507/529	Rhodamin 123	507/529
					Rosamin	550/574
					Rhodamin 6G	530/590
					JC1	514/529
Vacuolar Tracer					FM4-64	515/614
Lipid Tracer					Nile Red	485-530
						/526-605
					Dil (12, 16)	549/565
Neuronal Tracer	DID (760-780)		Lucifer Yellow	430/535	Evans Blue	550/610

Fluorescent Proteins –Covering the entire visible spectra

1	Excitation Maximum (nm)	Emission Maximum (nm)	Molar Extinction Coefficient	Quantum Yield	in vivo Structure	Relative Brightness (% of EGFP)
Orange Fluor	rescent proteins					
Kusabira Orange	548	559	51,600	0.6	Monomer	92
mOrange	548	562	71,000	0.69	Monomer	146
dTomato	554	581	69,000	0.69	Dimer	142
dTomato-Tandem	554	581	138,000	0.69	Monomer	283
DsRed	558	583	75,000	0.79	Tetramer	176
DsRed2	563	582	43,800	0.55	Tetramer	72
DsRed-Express (T1)	555	584	38,000	0.51	Tetramer	58
DsRed-Monomer	556	586	35,000	0.1	Monomer	10
mTangerine	568	585	38,000	0.3	Monomer	34
mStrawberry	574	596	90,000	0.29	Monomer	78
AsRed2	576	592	56,200	0.05	Tetramer	8
mRFP1	584	607	50,000	0.25	Monomer	37
JRed	584	610	44,000	0.2	Dimer	26
mCherry	587	610	72,000	0.22	Monomer	47
HcRed1	588	618	20,000	0.015	Dimer	1
mRaspberry	598	625	86,000	0.15	Monomer	38
HcRed-Tandem	590	637	160,000	0.04	Monomer	19
mPlum	590	649	41,000	0.1	Monomer	12
AQ143	595	655	90,000	0.04	Tetramer	11

Two Photon Excitatation Spectra of Fluorescent Proteins

Living up to Life

igure 1. 2PA spectra of orange and red FPs (symbols) shown along with fluorescence emission (blue line) and one-photon fluorescence excitatis slack line) spectra. The left vertical scale shows the 2PA cross section. The scale on the right represents two-photon brightness. One-photo

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, Absolute Two-Photon Absorption Spectra and Two-Photon Brightness of Orange and Red Fluorescent Proteins, J. Phys. Chem. B, 2009,

TCS SP5 MP: requirement

- Dedicated Multifunction Port (MFP)
- Direct coupling
- IR lasers: Tuneable over a wide range (690-1040nm)
- Attenuation
 - Half wave plate
 - EOM (Electro Optical Modulator)
 - Fine tuning of attenuation of excitation light
 - 0% 100%
 - ROI scan
 - Uncaging
 - photoactivation experiments
 - FRAP
- Detection
 - Descanned detectors (PMT / APD)

TCS SP5 MP: NDDs

Advantage of Multifphoton vs Confocal for imaging scattering tissue

- No confocal pinhole necessary
- detectors as close as possible to the specimen
- enables scattered photons to be collected
- → much higher photon collection efficiency compared to confocal microscopy

2 NDDs architecture

different dichroics available
 to separate pairs of fluorochromes

TCS SP5 MP: NDDs

Living up to Life

Highest photon collection efficiency

Detectors directly behind Objective, RLD

Detectors directly behind Condensor, TLD

Advantage:

- Scattered fluorescent photons can also be collected
- Special dichroic allows simultaneous acquisition of fluorescence and IR-SGC
- Protected by Leica patent US 6,831,780 B2

Photon Collection Efficiency - Internal vs. NDDs^{Living up to Life}

Mouse brain slice:~ 20 μm (center plane)Detection range:500 – 550 nmPMT:950 VObjective:20 x 1.0 WExcitation:920 nm, power level identical

Mean intensity image: 20

52

58

TCS SP5 MP: 4 NDDs solution

Living up to Life

4 NDDs solution

- Simultaneous acquisition of 4 colors
- Solution: adaptor + liquid light guide + 4NDDs module
- Photon transmission via liquid light guide
- Adaptor directly behind Objective, RLD
- Adaptor directly behind Condensor, TLD

TCS SP5 MP: 4 NDDs solution

Living up to Life

RLD adaptor

TLD adaptor

Architecture of the module containing the filtercubes

TCS SP5 MP: Filtersets for 4 NDDs

Living up to Life

Set 1	156504245							
DAPI / FITC / T	DAPI / FITC / TRITC / ALEXA633							
Cube1: DAPI / FITC	BP1 457/50	BS RSP495						
	BP2 525/50							
Cube2: TRITC / Alexa633	BP1 585/40	BS RSP620						
	BP2 650/50							
Beamsplitter		BS RSP560						

Set 2 156504246 SHG440 / CFP / YFP / DSRED						
Cube1: SHG440 / CFP	BP1 440/20	BS RSP455				
	BP2 483/32					
Cube2: YFP / DSRED	BP1 535/30	BS RSP560				
	BP2 585/40					
Beamsplitter		BS RSP505				

MP-imaging: 4 Dyes with the 4 channel NDDs Living up to Life

Sample: HELA-cells

MP Sequential Scanning

• Sequence 1: Excitation 800nm Blue: Nuclei – DAPI Red: Actin - Phalloidin-TRITC

• Sequence 2: Excitation 920nm Green: Tubulin - Alexa 488 Grey: Mitochondria - Mito-Tracker 599nm

Sample is a courtesy of Dr. G. Giese and Annemarie Scherbarth, MPI Heidelberg, Germany

MP-imaging: 3 dyes with the 4 channel NDDs Living up to Life

Platynereis

Two-photon excitation: 860 nm

- Blue: Nuclei DAPI
- Green: Actin Alexa 568
- Red: Tubulin Alexa 633

Sample is a courtesy of Dr. Leonid Nezlin, RSA, Moscow, Russia

Page 57

Living up to Life

